#+TITLE: Quantitative Methods #+PROPERTY: header-args:R :session acj :eval never-export #+STARTUP: hideall inlineimages hideblocks #+HTML_HEAD: * Title slide :slide: #+BEGIN_SRC emacs-lisp-slide (org-show-animate '("Quantitative Methods, Part-II" "Introduction to Statistical Inference" "Vikas Rawal" "Prachi Bansal" "" "" "")) #+END_SRC * Sampling Distributions ** Sampling Distributions :slide: #+RESULTS: sampling2 [[file:bsample2.png]] #+NAME: sampling2 #+BEGIN_SRC R :results output graphics :exports results :file bsample2.png :width 2500 :height 1500 :res 300 library(data.table) readRDS("plfsdata/plfsacjdata.rds")->worker worker$standardwage->worker$wage #read.table("~/ssercloud/acj2018/worker.csv",sep=",",header=T)->worker c(1:nrow(worker))->worker$SamplingFrameOrder worker[sex!=3,]->worker library(ggplot2) ggplot(worker,aes(wage))+geom_density(colour="black",size=1)+scale_y_continuous(limits=c(0,0.05))+scale_x_continuous(limits=c(0,600),breaks=c(0,mean(worker$wage),1000))->p # p+facet_wrap(~sex)->p p+annotate("text",x=380,y=0.045, label=paste("Population mean = ",round(mean(worker$wage)),sep=""))->p p+annotate("text",x=400,y=0.042, label="Distribution of sample means:")->p p+theme_bw()->p p sample(1:nrow(worker),5, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t1 for (i in c(1:9999)) { sample(1:nrow(worker),5, replace=FALSE)->a1 worker[a1,]->s1 c(t1,mean(s1$wage))->t1 } data.frame(sno=c(1:10000),meancol=t1)->t1 p+geom_density(data=t1,aes(meancol),colour="blue",size=1)-> p paste("Sample size 5: mean = ", round(mean(t1$meancol)), "; stdev = ", round(sqrt(var(t1$meancol))),sep="")->lab p+annotate("text",x=450,y=0.030,label=lab,colour="blue")->p p sample(1:nrow(worker),20, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t0 for (i in c(1:9999)) { sample(1:nrow(worker),20, replace=FALSE)->a1 worker[a1,]->s1 c(t0,mean(s1$wage))->t0 } data.frame(sno=c(1:10000),meancol=t0)->t0 p+geom_density(data=t0,aes(meancol),colour="darkolivegreen",size=1)-> p paste("Sample size 20: mean = ", round(mean(t0$meancol)), "; stdev = ", round(sqrt(var(t0$meancol))),sep="")->lab p+annotate("text",x=450,y=0.033,label=lab,colour="darkolivegreen")->p p sample(1:nrow(worker),50, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t for (i in c(1:9999)) { sample(1:nrow(worker),50, replace=FALSE)->a1 worker[a1,]->s1 c(t,mean(s1$wage))->t } data.frame(sno=c(1:10000),meancol=t)->t p+geom_density(data=t,aes(meancol),colour="red",size=1)-> p paste("Sample size 50: mean = ", round(mean(t$meancol)), "; stdev = ", round(sqrt(var(t$meancol))),sep="")->lab p+annotate("text",x=450,y=0.036,label=lab,colour="red")->p p sample(1:nrow(worker),200, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t4 for (i in c(1:9999)) { sample(1:nrow(worker),200, replace=FALSE)->a1 worker[a1,]->s1 c(t4,mean(s1$wage))->t4 } data.frame(sno=c(1:10000),meancol=t4)->t4 p+geom_density(data=t4,aes(meancol),colour="pink",size=1)-> p paste("Sample size 200: mean = ", round(mean(t4$meancol)), "; stdev = ", round(sqrt(var(t4$meancol))),sep="")->lab p+annotate("text",x=450,y=0.039,label=lab,colour="pink")->p p #+end_src ** Sampling Distributions :slide: + $Standard.error = \frac{\sigma}{\sqrt{mean}}$ | Standard deviation of population ($\sigma$) | 130 | | Standard errors of samples of size | | | 5 | 58 | | 20 | 29 | | 50 | 18 | | 200 | 9 | * Introduction to Hypothesis Testing ** Transforming the Distribution to Standard Normal :slide: #+RESULTS: sampling3 [[file:bsample3.png]] #+NAME: sampling3 #+BEGIN_SRC R :results output graphics :exports results :file bsample3.png :width 2500 :height 2000 :res 300 library(data.table) readRDS("plfsdata/plfsacjdata.rds")->worker worker$standardwage->worker$wage c(1:nrow(worker))->worker$SamplingFrameOrder worker[sex!=3,]->worker library(ggplot2) worker->t9 (t9$wage-mean(t9$wage))/sqrt(var(t9$wage))->t9$wage ggplot(t9,aes(wage))+geom_density(colour="black",size=1)->p p+scale_y_continuous(limits=c(0,0.75))->p p+scale_x_continuous(limits=c(-15,15) ,breaks=c(-5,0,mean(worker$wage),10,15))->p p+theme_bw()->p p sample(1:nrow(worker),5, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t1 for (i in c(1:9999)) { sample(1:nrow(worker),5, replace=FALSE)->a1 worker[a1,]->s1 c(t1,mean(s1$wage))->t1 } data.frame(sno=c(1:10000),meancol=(t1-mean(worker$wage))/sqrt(var(t1)))->t1 p+geom_density(data=t1,aes(meancol),colour="blue",size=1)-> p p sample(1:nrow(worker),20, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t0 for (i in c(1:9999)) { sample(1:nrow(worker),20, replace=FALSE)->a1 worker[a1,]->s1 c(t0,mean(s1$wage))->t0 } data.frame(sno=c(1:10000),meancol=(t0-mean(worker$wage))/sqrt(var(t0)))->t0 p+geom_density(data=t0,aes(meancol),colour="darkolivegreen",size=1)-> p p sample(1:nrow(worker),50, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t for (i in c(1:9999)) { sample(1:nrow(worker),50, replace=FALSE)->a1 worker[a1,]->s1 c(t,mean(s1$wage))->t } data.frame(sno=c(1:10000),meancol=(t-mean(worker$wage))/sqrt(var(t)))->t p+geom_density(data=t,aes(meancol),colour="red",size=1)-> p p sample(1:nrow(worker),200, replace=FALSE)->a1 worker[a1,]->s1 mean(s1$wage)->t4 for (i in c(1:9999)) { sample(1:nrow(worker),200, replace=FALSE)->a1 worker[a1,]->s1 c(t4,mean(s1$wage))->t4 } data.frame(sno=c(1:10000),meancol=(t4-mean(worker$wage))/sqrt(var(t4)))->t4 p+geom_density(data=t4,aes(meancol),colour="pink",size=1)-> p p #+end_src ** Distribution of sample mean with unknown population variance :slide: #+RESULTS: sampling5 [[file:bsample5.png]] #+NAME: sampling5 #+BEGIN_SRC R :results output graphics :exports results :file bsample5.png :width 3500 :height 2000 :res 300 library(data.table) library(ggplot2) options(scipen=9999) readRDS("plfsdata/plfsacjdata.rds")->worker worker$standardwage->worker$wage c(1:nrow(worker))->worker$SamplingFrameOrder worker[sex!=3,]->worker worker->t9 (t9$wage-mean(t9$wage))/sqrt(var(t9$wage))->t9$wage ggplot(t9,aes(wage))+geom_density(colour="black",size=1)->p p+scale_y_continuous(limits=c(0,0.75))->p p+scale_x_continuous(limits=c(-15,15) ,breaks=c(-15,0,round(mean(worker$wage)),15))->p p+theme_bw()->p p data.frame(sno=c(),meancol=c(),sterr=c())->t4 samplesize=10 for (i in c(1:20000)) { sample(1:nrow(worker),samplesize, replace=FALSE)->a1 worker[a1,]->s1 rbind(t4,data.frame( sno=i, meancol=mean(s1$wage), sterr=sqrt(var(s1$wage))/sqrt(samplesize) ) )->t4 } (t4$meancol)/t4$sterr->t4$teststat (t4$meancol)/sqrt(var(t4$meancol))->t4$teststat2 data.frame(modelt=rt(200000,samplesize-1,ncp=mean(t4$teststat)),modelnorm=rnorm(200000,mean=mean(t4$teststat2)))->m var(t4$teststat) var(m$modelt) var(m$modelnorm) var(t4$teststat2) mean(t4$teststat) mean(m$modelt) mean(m$modelnorm) mean(t4$teststat2) ggplot()->p p+geom_density(data=t4,aes(teststat2),colour="red",size=1)-> p p+geom_density(data=m,aes(modelnorm),colour="black",size=1)->p p+geom_density(data=t4,aes(teststat),colour="blue",size=1)-> p p+geom_density(data=m,aes(modelt),colour="darkolivegreen",size=1)->p p+annotate("text",x=-30,y=0.42, label=paste("Normal distribution, with standard deviation",round(sqrt(var(m$modelnorm)),2)), colour="black",hjust=0)->p p+annotate("text",x=-30,y=0.40, label=paste("Statistic with known population variance, standard error =", round(sqrt(var(t4$teststat2)),2)), colour="red",hjust=0)->p p+annotate("text",x=-30,y=0.38, label=paste("t distribution, with standard deviation =",round(sqrt(var(m$modelt)),2)), colour="darkolivegreen",hjust=0)->p p+annotate("text",x=-30,y=0.36, label=paste("Statistic with unknown population variance, standard error =", round(sqrt(var(t4$teststat)),2)), colour="blue",hjust=0)->p p+scale_x_continuous(limits=c(-30,30))+theme_bw()->p p #+end_src