diff --git a/README.md b/README.md index 6e338ae..72da8f8 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ # Lectures on Quantitative Methods for ACJ Students ### [Day 1](../master/acjlecturesday1.org) -### [Day 2](../master/acjlecturesday1.org) +### [Day 2](../master/acjlecturesday2.org) diff --git a/acjlecturesday2.org b/acjlecturesday2.org index 9131d9d..5a20e61 100644 --- a/acjlecturesday2.org +++ b/acjlecturesday2.org @@ -43,99 +43,8 @@ ** Sampling Distributions :slide: -#+RESULTS: sampling -[[file:bsample.png]] - -#+NAME: sampling -#+BEGIN_SRC R :results output graphics :exports results :file bsample.png :width 4500 :height 3000 :res 600 - library(data.table) - readRDS("plfsdata/plfsacjdata.rds")->worker - worker$standardwage->worker$wage - #read.table("~/ssercloud/acj2018/worker.csv",sep=",",header=T)->worker - c(1:nrow(worker))->worker$SamplingFrameOrder - worker[sex!=3,]->worker - library(ggplot2) - ggplot(worker,aes(wage))+geom_density(colour="black",size=1)+scale_y_continuous(limits=c(0,0.05))+scale_x_continuous(limits=c(0,1000),breaks=c(0,mean(worker$wage),1000))->p - # p+facet_wrap(~sex)->p - p+annotate("text",x=520,y=0.045, - label=paste("Population mean = ",round(mean(worker$wage)),sep=""))->p - p+theme_bw()->p - p - - - - sample(1:nrow(worker),5, replace=FALSE)->a1 - worker[a1,]->s1 - mean(s1$wage)->t1 - for (i in c(1:9999)) { - sample(1:nrow(worker),5, replace=FALSE)->a1 - worker[a1,]->s1 - c(t1,mean(s1$wage))->t1 - } - - data.frame(sno=c(1:10000),meancol=t1)->t1 - p+geom_density(data=t1,aes(meancol),colour="blue",size=1)-> p - paste("Distribution of sample means (5): mean = ", - round(mean(t1$meancol)), - "; stdev = ", - round(sqrt(var(t1$meancol))),sep="")->lab - p+annotate("text",x=700,y=0.033,label=lab,colour="blue")->p - p - - sample(1:nrow(worker),20, replace=FALSE)->a1 - worker[a1,]->s1 - mean(s1$wage)->t0 - for (i in c(1:9999)) { - sample(1:nrow(worker),20, replace=FALSE)->a1 - worker[a1,]->s1 - c(t0,mean(s1$wage))->t0 - } - - data.frame(sno=c(1:10000),meancol=t0)->t0 - p+geom_density(data=t0,aes(meancol),colour="darkolivegreen",size=1)-> p - paste("Distribution of sample means (20): mean = ", - round(mean(t0$meancol)), - "; stdev = ", - round(sqrt(var(t0$meancol))),sep="")->lab - p+annotate("text",x=700,y=0.036,label=lab,colour="darkolivegreen")->p - p - - sample(1:nrow(worker),50, replace=FALSE)->a1 - worker[a1,]->s1 - mean(s1$wage)->t - for (i in c(1:9999)) { - sample(1:nrow(worker),50, replace=FALSE)->a1 - worker[a1,]->s1 - c(t,mean(s1$wage))->t - } - - data.frame(sno=c(1:10000),meancol=t)->t - p+geom_density(data=t,aes(meancol),colour="red",size=1)-> p - paste("Distribution of sample means (50): mean = ", - round(mean(t$meancol)), - "; stdev = ", - round(sqrt(var(t$meancol))),sep="")->lab - p+annotate("text",x=700,y=0.039,label=lab,colour="red")->p - p - - sample(1:nrow(worker),200, replace=FALSE)->a1 - worker[a1,]->s1 - mean(s1$wage)->t4 - for (i in c(1:9999)) { - sample(1:nrow(worker),200, replace=FALSE)->a1 - worker[a1,]->s1 - c(t4,mean(s1$wage))->t4 - } - - data.frame(sno=c(1:10000),meancol=t4)->t4 - p+geom_density(data=t4,aes(meancol),colour="pink",size=1)-> p - paste("Distribution of sample means (200): mean = ", - round(mean(t4$meancol)), - "; stdev = ", - round(sqrt(var(t4$meancol))),sep="")->lab - p+annotate("text",x=700,y=0.042,label=lab,colour="pink")->p - p -#+end_src +#+RESULTS: sampling2 +[[file:bsample2.png]] #+NAME: sampling2 #+BEGIN_SRC R :results output graphics :exports results :file bsample2.png :width 4500 :height 3000 :res 600 @@ -230,7 +139,4 @@ p #+end_src -#+RESULTS: sampling2 -[[file:bsample2.png]] -